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We review critical situations, linked with period-doubling transition to chaos,
which require using at least two-dimensional maps as models representing the
universality classes. Each of them corresponds to a saddle solution of the two-
dimensional generalization of Feigenbaum-Cvitanović equation and is character-
ized by a set of distinct universal constants analogous to Feigenbaum’s α and δ.
One type of criticality designated H was discovered by several authors in 80-th
in the context of period doubling in conservative dynamics, but occurs as well
in dissipative dynamics, as a phenomenon of codimension 2. Second is bicritical
behavior, which takes place in systems allowing decomposition onto two dissipa-
tive period-doubling subsystems, each of which is brought by parameter tuning
onto a threshold of chaos. Types of criticality designated as FQ and C occur in
non-invertible two-dimensional maps. We present and discuss a number of real-
istic systems manifesting those types of critical behavior and point out some rel-
evant conditions of their potential observation in physical systems. In particular,
we indicate a possibility for realization of the H type criticality without vanish-
ing dissipation, but with its compensation in a self-oscillatory system. Next, we
present a number of examples (coupled Hénon-like maps, coupled driven oscil-
lators, coupled chaotic self-oscillators), which manifest bicritical behavior. For
FQ-type we indicate possibility to arrange it in non-symmetric systems of cou-
pled period-doubling subsystems, e.g. in Hénon-like maps and in Chua’s circuits.
For C-type we present examples of its appearance in a driven Rössler oscillator
at the period-doubling accumulation on the edge of syncronization tongue and
in a model map with the Neimark–Sacker bifurcation.
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1. INTRODUCTION

An important aspect of the problem of turbulent dynamics in spatially
extended systems of different nature is the question: how does the spatio-
temporal chaos originate from simple regular regimes as we vary one or
more control parameters?

The breakthrough in understanding the onset of chaos in low-
dimensional systems was Feigenbaum’s discovery of the period-doubling
universality and the renormalization-group (RG) approach.(1,2) The one-
dimensional non-invertible iterative maps represent the simplest class of
systems, which exhibit the Feigenbaum type of behavior. However, the
period-doubling transition to chaos with the same universal quantita-
tive regularities occurs in many multi-dimensional dissipative nonlinear
systems.(1–4) It takes place, for example, in the Lorenz and Rössler mod-
els,(5–7) in two-dimensional maps of Hénon and Ikeda,(8,9) in synchronized
systems inside the Arnold tongues,(10) in periodically driven dissipative
nonlinear oscillators,(11–14) in phase-locked loops,(15) in self-oscillating
electronic systems, like Anishchenko – Astakhov oscillator,(16) Dmitriev
– Kislov oscillator,(17) Chua circuit,(18) microwave backward-wave oscil-
lator.(19) Experimental observations of the Feigenbaum scenario were
reported in convection in liquid helium(20) and in mercury,(21) in acous-
tical oscillations of bubbles in fluid,(22) in Q-switched lasers,(23) in hybrid
acoustic-optical systems with delay.(24) This list may be continued.

As long as the Feigenbaum theory is applicable for a multidimen-
sional spatially extended system, it allows understanding the onset of
regimes of only restricted complexity, of certain spatial forms, which are
governed by dynamics of one variable in time described in terms of one-
dimensional model maps.

When new modes consequently come into play in a course of param-
eter variation on a road to developed spatio-temporal chaos, effective
dimension of the dynamics increases, and description in terms of the one-
dimensional maps inevitably becomes insufficient. In this paper, we review
several situations associated with period doubling, which require at least
two-dimensional maps as models for representation of the dynamics. These
situations may arise in the context of multi-parameter analysis of transi-
tion to chaos in multidimensional systems.

Generalizing concept of “scenario” for a multi-parameter case, we
may think of some configuration of domains of distinct regimes in the
parameter space, which includes regions of regular and chaotic dynam-
ics. Generic one-parameter transitions give rise to onset of chaos at some
surfaces. In particular, the Feigenbaum scenario occurs if a road in the
parameter space crosses transversally a sequence of the period-doubling
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bifurcation surfaces accumulating to the limit critical surface. Behaviors
that are more special may occur at some curves and points on this surface.
In the multi-parameter analysis, we are obliged to consider them too, as
phenomena of codimensions two and three, respectively. As believed, these
critical situations, like the Feigenbaum one, allow RG analysis, which must
reveal the intrinsic quantitative regularities. It implies existence of univer-
sal constants responsible for scaling properties in the phase space and in
the parameter space near the criticality, as attributes of the universality
class. In addition, configuration of regions of different dynamical regimes
in the parameter space in a definite coordinate system must be universal
too. The Feigenbaum critical behavior appears in this scheme as a phe-
nomenon of codimension one.

Critical situations of higher codimensions deserve accurate study and
classification because they represent “organizing centers” of the parame-
ter space structure, where domains of all relevant characteristic dynami-
cal regimes of the system are concentrated locally. It is clear that practical
observation of the high-codimensional critical situations is more difficult
than that for the low-codimensional ones (the same is true for the high
codimension bifurcations and catastrophes(25–28)). For this reason theoreti-
cal understanding of the high-codimensional types of critical behavior is of
particular significance for design of experiments aimed at their realization
and investigation. An important task of the theory is also construction
of model systems, the simplest representatives of the universality classes,
which would play for them the same role as the one-dimensional quadratic
map for the Feigenbaum scenario.

The paper is organized as follows. In Section 2, we derive a two-
dimensional generalization of the Feigenbaum–Cvitanović equation and
explain general content of the renormalization group analysis in applica-
tion to the situations of period doubling multiparameter criticality. In Sec-
tion 3, we review several critical situations associated with solutions of this
equation: period-doubling universality in area-preserving maps (H-type),
bicritical point, which appears in a special case of two-dimensional map
decomposed onto two subsystem with unidirectional coupling, and types
of criticality intrinsic to non-invertible two-dimensional maps designated
as FQ-type and C-type. Section 4 is devoted to discussion of the problem
of observation of the mentioned types of criticality in realistic systems. In
particular, we consider a model of van der Pol oscillator driven by pulses
with nollinear dependence of the amplitude on the instantaneous state. It
demonstrates H-type of criticality although does not relate to conservative
class. Then, we review several examples of the bicritical behavior: unidirec-
tionally coupled Hénon maps, coupled driven dissipative oscillators, cou-
pled chaotic self-oscillators (Chua’s circuits). A possibility of occurrence
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of FQ criticality is discussed; as examples, we consider systems of mutu-
ally coupled non-identical Hénon maps and Chua’s circuits. Finally, two
examples of the critical behavior of C type are presented for a periodically
driven chaotic oscillator of Rössler and for a model map demonstrating
the Neimark–Sacker bifurcation. In conclusion, we resume the presented
material and discuss it in a frame of the general picture of multi-parameter
criticality in nonlinear dynamics.

2. GENERAL CONTENT OF THE RENORMALIZATION

GROUP ANALYSIS

To analyze types of critical behavior intrinsic to two-dimensional
maps due to presence of an additional dimension of phase space, we
need a two-dimensional generalization of the renormalization equation of
Feigenbaum–Cvitanović.(29–31) It may be derived easily under assumption
that a coordinate system in the two-dimensional phase space is selected in
such way that the rescaling transformation, performed in a course of the
procedure, is diagonal: X →X/α, Y →Y/β.

Let us assume that evolution operator of the dynamics under con-
sideration over 2k units of discrete time is defined by a pair of functions
{gk(X,Y ), fk(X,Y )} normalized in such way that g(0,0) = 1, f (0,0) = 1.
By two-fold application of this operator and after variable change X →
X/αk, Y → Y/βk, where αk = 1/gk(1,1) and βk = 1/fk(1,1), we get the
renormalized evolution operator for 2k+1 units of time:

gk+1(X,Y )=αkgk(gk(X/αk, Y/βk), fk(X/αk, Y/βk)),

fk+1(X,Y )=βkfk(gk(X/αk, Y/βk), fk(X/αk, Y/βk)).
(1)

One can apply this doubling procedure called the RG transformation
repeatedly to obtain a sequence of the evolution operators for larger and
larger time scales. A critical situation usually corresponds to convergence
of the operator sequence to some definite limit, a fixed point of the RG
transformation, or, as alternative, to a periodic point called also a cycle.
However, the last possibility is not conceptually different, because in the
case of period p one can speak of a fixed point of the RG transformation
composed of p steps of the original construction.

Presence of a fixed point of the RG transformation means that the
rescaled long-time evolution operators at the criticality will be of a universal
form, up to a characteristic scale. In principle, this form of the renormalized
operator may be recovered (say, numerically) directly from the functional
fixed-point equations determined entirely by structure of the RG scheme,
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i.e., without any reference to a concrete system under examination. There-
fore, a fixed-point solution of RG equation gives rise to a universality class.
It may include systems of very different mathematical nature (e.g. iterative
maps, ordinary differential equations, extended systems, etc.)

In a case of a fixed point of the doubling transformation, the equa-
tions take a form

g(X,Y )=αg(g(X/α, Y/β), f (X/α, Y/β)),

f (X,Y )=βf (g(X/α, Y/β), f (X/α, Y/β)),
(2)

where α = 1/g(1,1) and β = 1/f (1,1). (Some versions of these equations
in different contexts were suggested and discussed e.g. in refs. 29, 32, 33.)
It is worth noting that often the “scaling variables” X, Y do not coincide
with “natural” variables of model maps.

The next step in the RG analysis consists in consideration of small
perturbations of the solution associated with the critical situation under
study. It gives rise to eingenvalue problem for a set of functional equa-
tions obtained from linearization of the RG transformation (1) near a
fixed point or a periodic solution. In a case of a fixed point of doubling
transformation {g(X,Y ), f (X,Y )} the eigenvalue problem reads

νu(X,Y )= α
[
g′

1(g(X/α,Y/β), f (X/α,Y/β))u(X/α,Y/β))

+g′
2(g(X/α,Y/β), f (X/α,Y/β))v(X/α,Y/β)

+u(g(X/α,Y/β), f (X/α,Y/β))] ,

νv(X,Y )= β
[
f ′

1(g(X/α,Y/β), f (X/α,Y/β))u(X/α,Y/β))

+f ′
2(g(X/α,Y/β), f (X/α,Y/β))v(X/α,Y/β)

+v(g(X/α,Y/β), f (X/α,Y/β))] ,

(3)

where indices 1 and 2 designate derivatives in respect to the first and the
second arguments.3

Among the eigenmodes one has to select the relevant ones, with |ν|>1
(they are responsible for asymptotic behavior of the solution at subsequent
repetition of the RG transformation), and exclude modes associated with
infinitesimal variable changes. The number of relevant modes n corresponds
to codimension of the critical situation. It is called also a degree of structural
stability. This is a minimal number of control parameters needed to observe

3The form of the linearized operator may be understood by analogy with the eigenvalue
problem from Feigenbaum’s theory that gives rise to the universal constant δ = 4.6692 . . .

The equations (3) appear from a straightforward generalization of the eigenvalue prob-
lem(1,2) for the two-dimensional case.(29–31,34–36)
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this criticality in a family of maps as a generic phenomenon. Indeed, as
we require the coefficients at n relevant eigenvectors to vanish, we obtain
precisely n conditions on parameters of the map under study.

To reveal scaling properties of the parameter space near a critical
situation one has to define a special local coordinate system, “scaling
coordinates”. It is natural to take the critical point itself as origin. Coor-
dinate axes must be directed in such way that a shift in the parameter
space from the critical point along each axis to give rise to a perturba-
tion associated with one definite relevant eigenmode of the linearized RG
equation. The eigenvalues ν = δ1, . . . , δn then play a role of scaling fac-
tors: under magnification with these factors along the coordinate axes one
will observe repetition of the parameter space arrangement in smaller and
smaller vicinities of the critical point. Moreover, in scaling coordinates, the
n-dimensional parameter space will have a universal topography, specific
for the given type of criticality. In a case of period-p fixed point of the
RG equation, each new level of the self-similar structure in the parameter
space will correspond to 2p-tupling of the time scale.

For codimensions higher than one, the problem of explicit construc-
tion of the scaling coordinates is usually nontrivial. Let us suppose we
have a critical point of codimension 2 with relevant eigenvalues δ1 and
δ2. One coordinate axis associated with the larger eigenvalue δ1 may be
directed almost arbitrarily. The only condition is that a shift along this
direction has to contribute into the coefficient at the eigenvector associated
with the largest eigenvalue. In other words, it has to be transversal to the
curve, at which this coefficient vanishes. In contrast, the second coordinate
axis must be defined accurately to coincide with that curve or, at least, to
have a tangency of certain order with it.

In practice, expressions for parameters via scaling coordinates (C1,C2)

may be constructed as power expansions. Moreover, it is reasonable to
truncate the expansions up to a finite number of terms. Which terms must
be retained, depends on a concrete relation between the eigenvalues δ1 and
δ2. Let us assume that |δ1| > |δ2|k > 1 at k = 1, . . . ,K, but |δ2|K+1 > |δ1|.
Then, the expressions for deflections of two control parameters from the
critical point via C1 and C2 should contain the terms C1,C2,C

2
2 , . . .CK

2 .
To explain this assertion, let us suppose that we draw a sequence of pic-
tures for parameter plane, representing topography of vicinities of the crit-
ical point in scaling coordinates with increasing resolution: the depicted
scales for the coordinate axes vary as C1 ∝ δ−k

1 and C2 ∝ δ−k
2 . If we review

the k-th picture, due to the rescaling, the contribution of the term Cm
2 in

the scaling coordinate expression will be of order δ−mk
2 . Neglecting this

term, we would have an error of order δ−mk
2 δk

1 in the amplitude of the
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main mode growing as δk
1. This error grows in dependence of the picture

number k, if m � K, and decreases, if m > K. Taking into account for
terms with m�K is necessary, but those with m>K may be omitted. In
the case K =1, i.e. at δ2

2 > |δ1|, the situation is the simplest: it is sufficient
to use linear variable change to get the scaling coordinates.

In the case of codimension 3, one should account terms like Ck
2Cr

3
with all possible integer r and k, for which δk

2δr
3 <δ1.

3. CRITICALITY TYPES INTRINSIC TO TWO-DIMENSIONAL

MAPS

3.1. Period-Doubling Criticality in Area-Preserving Maps

Soon after the works of Feigenbaum, several authors paid attention
to the fact that an infinite sequence of period-doubling bifurcations occurs
not only in dissipative but also in conservative systems, in particular, in
two-dimensional area-preserving maps.(33,34) In contrast to the dissipative
case, the convergence rate is a distinct universal factor, δ≈8.72. An appro-
priate version of the RG analysis was developed e.g. in refs. 29, 32, 34.
This kind of period-doubling is often referred to as Feigenbaum’s univer-
sality for conservative systems. However, in a spirit of our approach, we
prefer to separate terminologically this type of critical behavior from the
classic Feigenbaum universality class. Therefore, we call it the Hamiltonian
period-doubling criticality and designate with symbol H.

Hénon map

xn+1 =1−ax2
n −byn, yn+1 =xn, (4)

delivers a commonly known example of the H-type critical behavior
at b = 1, where it becomes area-preserving and has unit Jacobi deter-
minant.4 The period-doubling bifurcation curves on the parameter plane
(a, b) under increase of b approach the bifurcation points of the conser-
vative system at b = 1. (There both Floquet multipliers of the respective
periodic orbits become equal to −1.) These points form a sequence con-
verging to the H-point located at

bc =1, ac =4.136166803904275414860286 . . . (5)

4Note difference with original Hénon’s notation: b is changed to −b. We prefer this form
because b > 0 corresponds now to positive Jacobian, the case that allows physical interpre-
tations of the Hénon map as Poincaré map e.g. for kicked rotator and kicked oscillator, see
ref. 36.
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This critical point is associated with a fixed-point solution of the RG
equation (1) in a class of functional pairs with unit Jacobian deter-
minant. In literature, one can find several representations of this solu-
tion,(29,31,32,34,35) in particular, in a form of expansions over powers of
two variables:5

g(X,Y )=1−0.1947X−0.1252Y −0.9148X2 −0.0050XY+0.0004Y 2 +· · · ,

f (X,Y )=1+4.7901X−2.0556Y −14.8638X2 +0.1198Y 2+0.3204XY +· · ·
(6)

Renormalization constants found numerically are α =−4.0180767046
and β = 16.3638968792. Expressions for variables X, Y in the RG equa-
tion via “natural” variables of the map (4) look like X = x − xc, Y = y −
(1−acx

2)/2, where xc =0.047528242662189948 . . .

Because of conservative nature of the dynamics, there is no attractor
at the critical point. Nevertheless, the phase space possesses self-similar
structure. In particular, at the critical point H there exists a complete set
of unstable period-2k orbits. Locally, near the origin in (X,Y )-coordinates,
their elements obey the scaling property X ∼= 1/αk, Y ∼= 1/βk. Asymp-
totically in k, Floquet multipliers of these orbits tend to the universal
constants µ1 =−2.057478352 and µ2 =1/µ1 =−0.486031845. (These num-
bers are eigenvalues of the Jacobian matrix for the mapping (X,Y ) �→
(g(X,Y ), f (X,Y )) at its fixed point.)

Numerical solution of the eigenvalue problem for the RG equation line-
arized near the fixed-point reveals two relevant eigenvalues, δ1 =8.721097206
and δ2 =2.(29,31–35,37,38) The first one is associated with perturbations inside
the area-preserving class, and the second responds for dissipation. As fol-
lows, for conservative systems the H criticality is a phenomenon of codi-
mension one, and in a class of general systems it is of codimension two.
Scaling coordinates in the parameter plane of the Hénon map are deter-
mined by expressions a −ac =C1 +acC2 +1.560093C2

2 , b=1+C2, as found
by combination of computations and analytical considerations.

3.2. Bicritical Point in a Model with Unidirectional Coupling

Let us turn now to a special class of two-dimensional non-invert-
ible maps, which allow decomposition onto subsystems with unidirectional

5For this and other discussed types of criticality we give here shortened versions of expan-
sions for the universal functions, only to show their structure. For more accurate data,
appropriate for computations, we address a reader e.g. to our previous paper and web site,
see ref. 31.
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coupling: xn+1 = G(xn), yn+1 = F(xn, yn).(39,40) In literature, such systems
were discussed, in particular, as models of turbulence in open flows.(41,42)

Systems with unidirectional coupling may be constructed artificially; for
example, in electronics and optics such coupling may be designed easily in
experiments.(39,43) Recently, systems of this kind are studied in the context
of problems of chaotic communication.(44,45)

A model example is a system of two elements, each governed by a
quadratic map:(40)

xn+1 =1−λx2
n, yn+1 =1−Ay2

n −Bx2
n, (7)

where λ and A are control parameters for the first (“master”) and the sec-
ond (“slave”) subsystems, and B is the coupling parameter.

Figure 1 shows a chart of the parameter plane (λ, A) for the model
(7) at fixed B =0.375. Gray tones designate domains of regimes of differ-
ent periods in the driven subsystem. At small values of A any periodic
regime in the first subsystem induces the same period in the second one,
so, the vertical borders in the diagram correspond to bifurcations in the
first subsystem. In accordance with Feigenbaum’s law, they accumulate to
the border of the onset of chaos, also depicted by a vertical line. On
the other hand, going on the parameter plane bottom-up in a domain of

Fig. 1. Chart of dynamical regimes on parameter plane of the model map (7) at fixed cou-
pling parameter B = 0.375. Insets show local topography in a vicinity of the bicritical point
and illustrate scaling property: the picture reproduces itself under scale change by factors
δ1 =4.6692 and δ2 =2.3927 along the axes λ and A, respectively.
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period p=1, 2, 4, . . . of the first subsystem, one observes period doubling
bifurcation cascade in the second subsystem, starting from period p, and
then transition to chaos. The bifurcation lines are some curves, each of
which has a fissure at the intersection with a bifurcation line of the first
subsystem. The sequence of these curves converges to a critical line, which
is a chaos border in the second subsystem.

The point at which both the critical lines meet, is called the bicrtitcal
point.(39,40) In the model (7) at B =0.375 it is located at

λc =1.401155189092 . . . , Ac =1.124981403 . . . (8)

and marked with symbol B in Fig. 1.
Critical dynamics at the bicritical point is associated with a fixed-

point solution of the two-dimensional RG Eq. (2) represented by a pair
of functions {g(x), f (x, y)}, accounting the unidirectional nature of cou-
pling. As follows from (2), they obey a set of functional equations

g(x)=αg(g(x/α)), f (x, y)=βf (g(x/α), f (x/α, y/β)). (9)

The first equation is independent of the second one, and g(x) is the
well-known universal function of Feigenbaum and Cvitanović, with α =
1/g(1)=−2.5029 . . .

From numerical solution of the second equation(40,31) the second
component of the functional pair was obtained, as an expansion over
powers of x2 and y2:

f (x, y) = 1−0.5969x2 −0.0321x4 −0.8556y2

−0.3029x2y2 −0.4317y4 +· · · (10)

The rescaling factor was also computed; it is a new universal constant β =
−1.505318159 · · ·

Next, we can consider perturbations of the RG equation solution
due to a parameter shift from the bicritical point. Under an assumption
that the perturbations do not violate the unidirectional nature of cou-
pling, we can decompose the problem: one subspace corresponds to a
class of perturbations of the first subsystem, and another to perturba-
tions of the second one. For the first class, the problem reduces to that of
Feigenbaum, and there is a unique relevant eigenmode with the eigenvalue
δ1 =4.6692 . . . For the second class we come to equation

νv(x, y) = β
[
f ′(g(x/α), f (x/α, y/β))v(x/α, y/β)

+v(g(x/α), f (x/α, y/β))] , (11)
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Fig. 2. Bicritical attractor and illustration of its scaling property. The insets show a vicin-
ity of the origin with rescaling by factors α =−2.5029 and β =−1.5053 along horizontal and
vertical axes, respectively.

where a prime designates a derivative in respect to the second argument.
Numerical solution yields the second eigenvalue δ2 = 2.3927244 . . . Pres-
ence of two relevant eigenvalues means that the bicritical situation has co-
dimension 2 in a class of systems with unidirectional coupling.6

The map (x, y) → {g(x), f (x, y)}, which represents asymptotic form
of the evolution operator at the bicritical point, has a fixed point (x∗, y∗),
as checked numerically. Then, as follows from the RG equation, it has
orbits of all periods 2k, starting at (x∗/αk, y∗/βk). All of them are unsta-
ble, and the Floquet multipliers are determined by the universal numbers
µ1 =g′(x∗)=−1.6011913 and µ2 =f ′

y(x
∗, y∗)=−1.17885538.

Attractor at the bicritical point is represented by a fractal set on the
plane (x, y), see Fig. 2. The constants α and β determine scaling prop-
erties of this set locally near the origin (0, 0) along the axes x and y,
respectively. Hausdorff dimension of the bicritical attractor was computed
in ref. 40; the improved estimate yields D0 =1.0785514.

On the parameter plane, a neighborhood of the bicritical point obeys
a scaling property. Namely, the local topography of the dynamical regimes
reproduces itself in smaller scales under magnification along the axes λ

and A with factors δ1 and δ2, respectively. It corresponds to doubling of
the characteristic time scales. In Fig. 1 this property is illustrated by insets.

Bicritical points with the same quantitative regularities take place in
the model map (7) also at other values of the coupling parameter. In fact,
in the three-dimensional parameter space there is a curve of the bicritical

6In the case of smooth perturbations including those introducing backward coupling, in
accordance with our computations, spectrum of the linearized RG Eq. (3) near the fixed
point solution responsible for the bicriticality contains seven relevant eigenvalues: δ1 =
4.6692016, δ2 = 2.3927244, δ3 = 4.296897, δ4 = −4.161610, δ5 = −1.83648, δ6,7 = 0.9404 ±
0.4024i. Hence, codimension is rather high, and it seems very problematic to observe this
type of criticality without constraint of the unidirectional coupling.
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points. It is placed in interval of B from 0 to 0.83505, and the edges are
critical points of distinct nature (see details in ref. 46).

In fact, bicriticality evidently may occur under much more general cir-
cumstances than that of the quadratic coupling. For example, let us turn
to a model with linear coupling term:

Xn+1 =1−λX2
n, Yn+1 =1−aY 2

n +bXn. (12)

By a shift of a reference point for the discrete time in the first sub-
system, i.e. setting Xn =xn+1, we get the map

xn+1 =1−λx2
n, Yn+1 =1−aY 2

n +bxn+1 =1−aY 2
n +b(1−λx2

n),

(13)

which transforms easily to the model (7) by means of a variable change
Y = y(1 + b), B = b(1 + b)λ. Hence, the model (12) also manifests bicriti-
cality for appropriately chosen values of the parameters.

3.3. Criticality of FQ-type

Let us consider a two-dimensional non-invertible map of the follow-
ing special form:(47,31)

xn+1 =1−ax2
n +d ·xnyn, yn+1 =1−bxnyn (14)

Figure 3 shows a chart of regimes for this map on a parameter plane
(a, b) at fixed d = 0.3. Gray tones designate domains of different periods.
Black corresponds to non-periodic regimes, including quasiperiodicity and
chaos, and white to divergence of iterations to infinity.

Obviously, at b = 0 we have a quadratic map, which demonstrates
a standard period-doubling cascade under increase of a. Due to the
Feigenbaum universality, the same character of the transition to chaos
takes place at nonzero moderate values of b. At larger b the character
of dynamics changes: domains of quasiperiodicity appear alternating with
domains of periodic behavior (the Arnold tongues).

Under increase of b along the Feigenbaum critical curve, we arrive at
the critical point designated FQ (that stands for “Feigenbaum + Quasipe-
riodicity”).(47,31) To localize it accurately, one can trace a sequence of ter-
minal points of the period-doubling bifurcation curves, where two Floquet
multipliers of the respective periodic orbits becomes both equal to (−1),
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Fig. 3. Chart of dynamical regimes for the model map (14) on the parameter plane (a, b) at
fixed d =0.3. A neigborhood of the critical point FQ is shown separately in the insets in scal-
ing coordinates a − ac =C1 + 0.47733C2, b − bc =C2. The pictures demonstrate self-similarity
under scale change with factors δ1 =6.3263 and δ2 =3.4447 along the horizontal and vertical
axes, respectively.

and estimate limit of this sequence. At the selected value d =0.3 the criti-
cal point FQ is placed at

ac =1.767192895 . . . , bc =1.629678013 . . . (15)

As found,(47,31) this critical point is associated with a fixed point of
the RG Eq. (1); functions g and f are represented by expansions over
powers of X2 and XY :

g(X,Y ) = 1−1.0979X2 +0.1571X4 +0.0018X2Y 2

−0.7114XY +0.0865X3Y +· · · ,

f (X,Y ) = 1+0.0680X2 +1.5416X4 +0.2101X2Y 2

−2.7960XY +1.3619X3Y +· · ·

(16)

The scaling constants are α = −1.90007167 and β = −4.00815785.
(A link of X and Y with the original x and y in the model (14) is
expressed as X ∝x, Y ∝y −2.1091x.)

At the critical point FQ there exist a complete set of periodic
orbits of periods 2k. Indeed, as checked numerically, the map (X,Y ) →
{g(X,Y ), f (X,Y )}, has a fixed point (X∗, Y ∗). Then, as follows from the
RG equation, it has an orbit of period 2k, starting at (X∗/αk, Y ∗/βk) for
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any integer k. All these orbits are unstable, with Floquet multipliers deter-

mined by eigenvalues of the matrix
(

g′
X(X∗, Y ∗) g′

Y (X∗, Y ∗)
f ′

X(X∗, Y ∗) f ′
Y (X∗, Y ∗)

)
. These are

universal numbers µ1 =−1.579739 and µ2 =−1.057149.
Attractor at the critical point FQ is a fractal set, which may be

thought as a limit object, “cycle of period 2∞”. The first diagram of
Fig. 4 shows a general view of the critical attractor on the phase plane
(x, y) of the model map (14) at d = 0.3. The second and the third dia-
grams are plotted in coordinates used in the RG equation. In these coor-
dinates, the structure reproduces itself under magnification with factors α

and β along the horizontal and vertical axes, respectively.
Numerical solution of the eigenvalue problem for the RG equation

linearized at the fixed point FQ yields three relevant eigenvalues, δ1 =
6.32631925, δ2 =3.44470967, and δ3 =α=−1.90007167.(31) Hence, formally
speaking, the codimension is three. Nevertheless, due to special selection
of the model map (14), shifts of the parameters from the critical point do
not contribute into the third mode. This is why we could detect the critical
point FQ in a course of two-parameter analysis. In the parameter space
(a, b, d) there is a curve of FQ points. The scaling property for a cross-
section of the parameter space by a surface transversal to the critical curve
is determined in this situation by two factors, δ1 and δ2. It is illustrated by
insets in Fig. 3. An expression for the scaling coordinates is given in the
figure capture.

A model, for which variation of parameters gives rise to all three rel-
evant modes of the linearized RG equation, may be constructed by adding
one more parameter:

xn+1 =1−ax2
n +d(xn − c)yn, yn+1 =1−b(xn − c)yn. (17)

Fig. 4. Critical attractor at the point FQ in the model map (14) at d = 0.3 and illustration
of its scaling property. A selected fragment (parallelogram) is shown separately in “scaling
coordinates” X = x, Y = y − 2.1091x. Under magnification by factors α = −1.9000 and β =
−4.0081 along the horizontal and vertical axes, respectively, the structure reproduces itself
with good accuracy.
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This model delivers the three-parameter unfolding of the FQ critical
point. (See ref. 47, where charts of regimes are shown in different cross-
sections of the parameter space for the model (17).)

3.4. Criticality of C-type

All types of critical situations discussed so far relate to some spe-
cial classes of two-dimensional maps (H to an area-preserving class, B
to a class allowing the master-slave decomposition, FQ to a case of cer-
tain degeneracy). Of what kind may be critical behavior in a generic non-
invertible two-dimensional map?

As proved by Whitney,(26,48) two types of singularities may occur as
typical in two-dimensional differenttiable maps, a fold and a cusp. In two-
dimensional state space, the folds take place on curves and cusps at single
points.

To derive a convenient model of iterative map, let us start with a
standard form of the fold mapping

(u, v) �→ (u2, v) (18)

and compose it with a general affine transformation (u, v) �→ (A + Bu +
Cv, D +Eu+Fv), where A,B, . . . , F are parameters. It yields a map

(u, v) �→ (A+Bu2 +Cv, D +Eu2 +Fv), (19)

which may be reduced by a variable and parameter change

x =−Bu, y = [D/(1−F)−v]B2F−1,

a =B [CD/(F −1)−A] , b=EC/B, d =F (20)

to the three-parameter map(47):

xn+1 =a −x2
n +byn, yn+1 =−x2

n +d ·yn. (21)

Figure 5 shows a chart of dynamical regimes on the parameter plane
(a, d) at fixed b = −0.6663 (a reason for this special choice is explained
further). At small d, as seen from the picture, increase of a is accompa-
nied by transition to chaos via period doubling cascade, and it obeys, as
checked, the Feigenbaum regularities. Increasing d and tracing one of the
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Fig. 5. Chart of dynamical regimes for the model map (21) on the parameter plane (a, d)

at b=−0.6663 (left) and areas of stability for cycles of period 2, 4, . . . , 64 in scaling coordi-
nates a −ac =C1 −C2 −1.54607C2

2 −2.15C3
2 , d −dc =0.79017C2 (to the right).

period-doubling bifurcation curves, we arrive at the terminal point, where
two Floquet multipliers of the periodic orbit become equal to (−1) and
1. Accurate estimate of the limit of the sequence of terminal points from
numerical computations yields coordinates of the critical point

ac =0.24990280 . . . , dc =0.45290288 . . . (22)

Computations based on iterations of the model map at this point
with use of “scaling variables” X = x, Y = y + 1.3164475 show that the
respective solution of the RG Eq. (1) is represented by a period-2 cycle. It
consists of two functional pairs (g1(x, y), f1(x, y)) and (g2(x, y), f2(x, y)),
which satisfy a set of functional equations

g2(X,Y )=α1g1(g1(X/α1, Y/β1), f1(X/α1, Y/β1)),

f2(X,Y )=β1f1(g1(X/α1, Y/β1), f1(X/α1, Y/β1)).

g1(X,Y )=α2g2(g2(X/α2, Y/β2), f2(X/α2, Y/β2)),

f1(X,Y )=β2f2(g2(X/α2, Y/β2), f2(X/α2, Y/β2)).

(23)

where α1,2 =1/g1,2(1,1), β1,2 =1/f1,2(1,1). (Notation “C” for this type of
criticality stands for “Cycle”.) From numerical solution of these equations,
the functions g1,2 and f1,2 were obtained in a form of expansions over
powers of X2 and Y :
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g1(X,Y )=1−1.2770X2 −0.4995Y +0.1391X2Y +· · · ,

f1(X,Y )=1−2.3210X2 +0.2267Y +0.5051X2Y +· · · ,

g2(X,Y )=1−1.5293X2 +0.2314Y −0.0592X2Y +· · · ,

f2(X,Y )=1−1.6598X2 +1.3491Y +0.2212X2Y +· · ·

(24)

As known, Feigenbaum’s RG transformation is called the doubling
transformation. In our case, what we have is the quadrupling transforma-
tion, which possesses two fixed points represented by the functional pairs
g1, f1 and g2, f2. Rescaling factors determining scaling properties of the
state space under this quadrupling transformation are

α =α1α2 =6.565350 . . . , β =β1β2 =22.120227 . . . , (25)

Computations show that the map (x, y) �→ (g1(x, y), f1(x, y)) pos-
sesses a stable fixed point X∗ = 0.25039, Y ∗ = 1.59489 with Floquet mul-
tipliers µ

(1)

1 = −0.725255 and µ
(1)

2 = 0.847450, eigenvalues of the matrix(
g′

1,X
(X∗, Y ∗) g′

1,Y
(X∗, Y ∗)

f ′
1,X

(X∗, Y ∗) f ′
1,Y

(X∗, Y ∗)

)
. Recall that the map (x, y) �→ (g1(x, y),

f1(x, y)) iterated four times reproduces itself under scale change (X →
X/α,Y → Y/β). So, presence of the stable fixed point implies existence of
stable cycles of all periods 4k, k =1,2, . . . ,∞, and all of them have multi-
pliers equal to the above universal values. (Note that at least one point of
a periodic orbit of period 4k from this set may be easily estimated: X∗/αk,
Y ∗/βk.) Thus, the map (x, y) �→ (g1(x, y), f1(x, y)) has an infinite count-
able set of coexisting attractors, the stable orbits of period 4k called the
critical quasi-attractor.(31,47) The same is true for the model map (21) at
the C-type critical point. Figure 6 shows three first representatives of this
set of coexisting attractors, the orbits of period 1, 4 and 16 on the phase
plane of the map (21).

Beside the stable cycles of period 4k there exist a countable set of
unstable cycles of period 2 ·4k at the critical point. It follows from the fact
that the map (x, y) �→ (g1(x, y), f1(x, y)) has a period-2 cycle with multi-
pliers µ

(2)

1 = −0.848865 and µ
(2)

2 = 1.174459. Note that the map (x, y) �→
(g2(x, y), f2(x, y)) has an unstable fixed point with multipliers µ

(2)

1 , µ
(2)

2
and a stable period-2 cycle with multipliers µ

(1)

1 , µ
(1)

2 .
Linearization of Eqs. (1) gives rise to an eigenvalue problem for per-

turbations of the RG equation cycle. The largest three eigenvalues for the
quadrupling transformation (excluding those associated with infinitesimal
variable changes) are δ1 =92.43126348, δ2 =4.19244418, δ3 ≈0.93. Only δ1
and δ2 are larger than 1, so, the codimension formally equals 2. It means
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Fig. 6. Coexisting attractors of the map (21) at the critical point C for b=−0.6663: a fixed
point (×) and stable orbits of period 4 (•) and 16 (◦).

that this type of critical behavior occurs as typical under two-parameter
analysis. Insets in Fig. 5 illustrate the scaling property in the parameter
space near the critical point C of the model map (21). In this domain, the
chart of dynamical regimes may be thought as a set of overlapping sheets,
each corresponding to one of the attractors coexisting at the critical point
and in its vicinity. In appropriate local coordinate system (see the figure
caption), the topography clearly looks self-similar under rescaling with fac-
tors δ1 and δ2 along the coordinate axes accompanied by quadrupling of
time scales of the dynamics.

Note that the third eigenvalue δ3 is slightly less than one. In general,
it leads to very slow convergence. In other words, as a rule, the quanti-
tative universality of C type may be observed only after a large number
of period doublings. If the system has an additional third parameter, one
can try to select it to remove a contribution of the slow mode. This is
a reason why we choose special value of b = −0.6663 for the computa-
tions. As well, the critical point C may be found at positive b. The best
convergence occurs at b = 0.6544, and the critical point is located at ac =
0.566620683 . . . , dc =1.597132592 . . . At this point, the RG cycle oscillates
in opposite phase, and the critical quasiattractor consists of stable cycles
of periods 2 ·4k.

4. PERIOD-DOUBLING CRITICAL BEHAVIOR IN PHYSICAL

SYSTEMS AND REALISTIC MODELS

Feigenbaum’s universal behavior associated with the generic period-
doubling transition to chaos occurs in many nonlinear dissipative systems
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of different physical nature. Equipped with knowledge of types of the
period-doubling criticality intrinsic to two-dimensional maps, we may now
turn to consideration of possibilities of their observation in various sys-
tems and their realistic models.

4.1. H-type Criticality in the Context of Dissipative Dynamics

H-type of critical behavior was discovered as an attribute of conser-
vative dynamics. Concerning real systems, it could occur in situations like
motion of charged particles in vacuum in electric and magnetic fields, or
in systems of celestial mechanics with gravitational interaction. In more
common every-day circumstances, or in laboratorial studies, dissipation
presents inevitably. If one wish to approach H-type criticality, say, in
experiments with a forced nonlinear oscillator actualized as a mechani-
cal device or an electronic circuit, a natural and straightforward idea is to
undertake measures to exclude, as far as possible, the energy loss. In this
case, in principle, we may speak only of more or less satisfactory approx-
imation for an ideal conservative system.7

Alternatively, we may try to arrange H-type of criticality not in con-
servative, but in a dissipative self-oscillatory system. In this case, H type
will appear not due to vanishing dissipation, but due to compensation
of dissipation in the self-oscillatory system from external non-oscillatory
source of energy. Accounting the codimension-2 nature of the H critical-
ity outside the class of conservative systems, we must have two control
parameters, one responsible for strength of nonlinearity, and another for
the energy balance in the system.

In a more general frame, let us suppose that we have some multi-
dimensional nonlinear dissipative system demonstrating the Feigenbaum
period-doubling cascade, and by variation of parameters get a situation of
approach of an additional mode to an instability threshold. Is it possible
in such case to meet the critical behavior of H type?

As a model, let us consider a van der Pol oscillator driven by a
sequence of short pulses of period T , and assume that amplitudes of the
kicks depend on an instantaneous value of the dynamical variable as F(x).
Then, the dynamical equation reads

ẍ − (ε −µx2)ẋ +x =
∑

m

F(x)δ(t −mT ), (26)

where ε and µ are internal parameters of the oscillator.

7In this case, in a course of the bifurcation cascade, the first period-doubling bifurcations
will demonstrate (approximately) regularities intrinsic to the conservative case, and subse-
quent bifurcations manifest passage to the Feigenbaum law intrinsic to dissipative systems.
There is a number of publications devoted to this phenomenon called crossover.(33,37,38,49)
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Let us derive an explicit stroboscopic Poincaré map for this system in
some reasonable approximation. In assumption that parameters ε, µ, and
amplitude F are small, between the kicks we can use a method of slow
amplitudes. Let us set x =aeit +a∗e−it and require the complex amplitudes
a and a∗ to satisfy an additional condition ȧeit + ȧ∗e−it =0, hence, ẋ =v=
iaeit − ia∗e−it . Substitution of the expressions for x and ẋ into the van
der Pol equation with subsequent multiplying by e−it and averaging over
a period of the basic oscillations yields the amplitude equation

ȧ = 1
2ε − 1

2µ|a|2a. (27)

Let us assume that x and ẋ = v are the values of coordinate and
velocity just before a kick. Then, immediately after the kick, we get x+0 =
x, v+0 =v +F(x). As follows from definition of the amplitude a,

a+0 =a − 1
2 iF (x). (28)

Solution of Eq. (27) with initial condition (28) yields

a(t)= 1
2 (x − iv) exp(it)= a+0 exp(εt/2)√

1+(µ/ε)(exp εt−1)|a+0|2
. (29)

At t =T , accounting the link between variables a, a∗ and x, v, we get
the coordinate and velocity just before the next kick:

x′ =B [x cosT + (v +F(x)) sin T ]
{
1+C

[
x2 + (v +F(x))2

]}−1/2
,

v′ =B [−x sin T + (v +F(x)) cosT ]
{
1+C

[
x2 + (v +F(x))2

]}−1/2
,

(30)

where B = exp 1
2εT , C =µT (exp εT −1)/(4εT ). This is the desired strobo-

scopic map.
For simplicity, let us set T = (4k +1)π

/
2 and select a concrete func-

tion F(x)=1−Ax2. Then, the map takes a form

xn+1 =B(1−Ax2
n −yn)

{
1+C

[
x2
n + (1−Ax2

n −yn)
2
]}−1/2

,

vn+1 =Bxn

{
1+C

[
x2
n + (1−Ax2

n −yn)
2
]}−1/2

,

(31)

where index n numerates steps of discrete time. Note that in a limit ε→0,
µ→0 we have B =1, C =0, and the map (31) reduces to the area-preserv-
ing Hénon map.
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Figure 7 shows a chart of dynamical regimes for the model (31) at
certain fixed µT . The horizontal axis corresponds to parameter, which
controls the Andronov – Hopf bifurcation of birth of a limit cycle in the
autonomous van der Pol oscillator, and the vertical axis to parameter of
nonlinearity in the kick amplitude dependence. Gray tones denote periodic
behaviors with periods labeled by numbers; black corresponds to non-peri-
odic regimes (quasiperiodicity and chaos). Strips designate areas of mul-
tistability, the alternating tones relate to the regimes associated with the
distinct coexisting attractors.

At large negative ε, far from the Andronov-Hopf bifurcation thresh-
old, the oscillator itself behaves as a linear system, and nonlinearity enters
into play only due to the kick amplitude dependence on x. In this domain,
the map is equivalent (up to a variable change) to the conventional Hénon
map and manifests transition to chaos via the Feigenbaum period dou-
bling cascade. In domain of positive ε, the oscillator becomes active, and a
possibility of quasiperiodic behavior due to beating of its own oscillations
and periodic kicks arises (see the right-hand part of the diagram).

If we increase ε and try to trace the Feigenbaum critical line, it ter-
minates at some point. Accurately, location of this point may be estimated
as a limit of the sequence of terminal points for the curves of subsequent

Fig. 7. Parameter plane for the map (31) at constant µT . Horizontal axis corresponds to
the parameter controlling the Andronov – Hopf bifurcation in the autonomous van der Pol
oscillator, and the vertical axis to the parameter of nonlinearity in the kick amplitude depen-
dence. Gray tones designate periodic behaviors with periods labeled by numbers, black corre-
sponds to chaos. Strips denote areas of multistability, the alternating tones designate regimes
associated with the distinct coexisting attractors. The critical point (32) is marked with letter
H. The value of µT =3.2468323108 has been selected numerically to have C =1 at the critical
point.
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period-doubling bifurcations. At those points the respective periodic orbits
have two Floquet multipliers equal to (−1). Estimating the limit, we get
the critical point

εTc =0.4036684037636 . . . , Ac =4.083016502041 . . . (32)

What is nature of this point? Does it relate indeed to the H-type crit-
icality class?

The best way to check belonging of the critical point associated with
period doubling to a supposed universality class, consists in computation
of multipliers for orbits of period 2k with large integer k. This is conve-
nient, in particular, because multipliers are invariant in respect to selection
of a coordinate system in the phase space. The multipliers must tend to
the universal values obtained from the RG analysis for the given univer-
sality class.

For the critical point under consideration the results are summarized
in Table I. Observe fast convergence to the universal constants expected
for the H-type critical point in accordance with results of the RG analy-
sis (the last row in the table). Also, as seen from the Table, a product of
two multipliers for higher periods of cycles tends to 1 with high precision,
which corresponds to the conservative nature of the critical dynamics in
asymptotic of large time scales.

Table I. Multipliers of cycles of period 2k and their prod-

ucts at the critical point of H type in the Hénon–van der Pol

map (31) A = 4.083016502041034, B = 1.223645113234917, C = 1,

εT = 0.4036684037636123, µT = 3.246832310801523

p =2k µ1 µ2 µ1µ2

1 −2.141639 −0.5135136 1.0997609
2 −2.046802 −0.4827731 0.9881407
4 −2.058910 −0.4864611 1.0015799
8 −2.057285 −0.4859759 0.9997908

16 −2.057504 −0.4860392 1.0000278
32 −2.057475 −0.4860309 0.9999963
64 −2.057477 −0.4860325 1.0000005

128 −2.057461 −0.4860359 1.0000000
256 −2.057328 −0.4860676 1.0000002
RG −2.0574783 −0.4860318 1
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4.2. Examples of Bicritical Behavior

The model system with bicritical point discussed in Sec.3.2 had a
structure of two elements with unidirectional coupling, each governed by
a one-dimensional period-doubling map. As we believe, the principal thing
for the building blocks is not their one-dimensional nature, but relation to
the class of the Feigenbaum period doubling systems. If so, any two sys-
tems with unidirectional coupling, in which the period doubling cascade
takes place, are appropriate.

Coupling in Eq. (7) is of dissipative type: it tends to equalize an
instantaneous state of the driven subsystem to that of the master one.
Indeed, each step of iterations in that model may be regarded as a compo-
sition of a nonlinear transformation for states of uncoupled elements, and
averaging of them with some weights to get the state of the driven sub-
system. (See discussion for a case of mutual coupling e.g. in refs. 50, 51.)
Hereafter, we often use the dissipative coupling, as its idea is clear and
physically significant.

A fundamental imperfection of non-invertible one-dimensional maps
consists in the fact that they cannot serve as Poincaré maps for flow sys-
tems (differential equations), at least in rigorous and straightforward sense.
To make a step to more realistic models, we turn to a system of elements,
each governed by a Hénon-like map. That is a two-dimensional invertible
dissipative map manifesting the period-doubling cascade, and it may be
regarded as Poincaré map for some flow. Using an assumption of dissipa-
tive nature of the unidirectional coupling, we set

xn+1 =1−λx2
n −bun,

un+1 =xn,

yn+1 =1−Ay2
n −B(λx2

n +bun)−bvn,

vn+1 =yn.

(33)

Here x and u relate to the master subsystem, and y and v to the driven
one. Parameters λ and A control period-doubling, respectively, in the first
and in the second subsystem. B is coupling constant, and b characterizes the
dissipation strength in the subsystems. Hereafter we fix b=0.3 and B =0.3.

To locate the bicritical point on the parameter plane (λ, A) one can
trace a sequence of terminal points on the bifurcation lines λ = λk of
period-doubling in the first subsystem, at which the second subsystem
undergoes the period-doubling bifurcation too, i.e. two main multipliers of
the respective periodic orbit are equal to −1. Estimate of the limit of this
sequence in computation yields

λ=λc =1.9516464506803 . . . , A=Ac =1.49457524 . . . (34)
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Fig. 8. Parameter plane (a) and bicritical attractor in projection onto the plane (x, y) (b)
for the system of coupled Hénon maps. In diagram (a) the bicritical point is labeled with the
letter B; gray tones designate areas of periodic regimes and numbers indicate periods in the
driven subsystem. Dark areas correspond to chaos or unrecognized higher-period regimes.
Parameter of dissipation b=0.3, and coupling parameter B =0.3.

The first subsystem obviously belongs to the Feigenbaum universality
class. Hence, to check relation to the bicritical situation, it is sufficient to
consider only multipliers associated with the second subsystem. In Table II
we summarize the data for the critical point (34). Observe good agreement
with the universal constant for higher period cycles.

Figure 8a shows a parameter plane diagram for the coupled Hénon
maps, the bicritical point is marked with a letter B. Figure 8b presents
a portrait of the critical attractor in projection from the four-dimensional
state space onto the plane (x, y). Both pictures look remarkably similar to
those from Figs. 1 and 2. All these observations give evidence that we deal
indeed with the critical point relating to the universality class discussed in
Section 3.2.

Table II. Multipliers of unstable cycles of period p = 2k in the driven sub-

system for the unidirectionally coupled Hénon maps at the bicritical point

b = B = 0.3, λ = λc = 1.95164645…, A =Ac = 1.49457524…

p =2k µ p =2k µ P =2k µ

1 −1.239263 32 −1.177933 1024 −1.177997
2 −1.280900 64 −1.176060 2048 −1.179348
4 −1.194400 128 −1.177747 4096 −1.178346
8 −1.154316 256 −1.177668 . . . . . . . . . . . . . . . . . . . . . . ..

16 −1.163422 512 −1.179486 RG −1.178855



Multiparameter Critical Situations, Universality and Scaling 721

Fig. 9. Scheme of the experimental device studied in ref. 39 (a), which contains a source of
alternate voltage V , amplifiers A1 and A2 with controlled gain to vary the amplitudes U1 and
U2, diodes D1 and D2, an amplifier A0 providing the unidirectional coupling, and a chart of
regimes from the experiment (b). Along horizontal and vertical axes amplitudes are plotted
of driving in the first and the second subsystem, respectively.

Next, we turn to examples relating to a class of unidirectionally cou-
pled driven dissipative nonlinear oscillators.

Already in the first work reported on the discovery of the bicriti-
cal behavior,(39) beside theoretical considerations and computations, some
experimental results were presented for a system of two periodically driven
nonlinear RL-diode circuits. In the scheme, the unidirectional coupling
was arranged by a special amplifier (Fig. 9a). By variation of two control
parameters, which were amplitudes of external driving in both subsystems,
in the experiment it was sufficiently easy to bring simultaneously both sub-
systems to the chaos threshold and get the bicritical situation. In Fig. 9b
a parameter plane chart from that experiment is reproduced. Observe nice
qualitative correspondence of the topography in a vicinity of the bicritical
point with that for model systems of coupled maps.

Kim and Lim(52) presented a detailed computational study for a sys-
tem of driven nonlinear oscillators with unidirectional coupling:

ẋ1 =y1,

ẏ1 =−2π(β�y +�2 −A cos 2πt) sin 2πx1,

ẋ2 =y2 + c(x1 −x2),

ẏ2 =−2π(β�y +�2 −B cos 2πt) sin 2πx2 + c(y1 −y2).

(35)

In these equations, variables with subscripts 1 and 2 relate to the first
and the second subsystem, respectively. In accordance with argumentation
developed e.g. in refs. 50, 51, coupling in this system is of dissipative type
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Fig. 10. Phase portraits of the bicritical attractor for the system of driven nonlinear oscil-
lators with unidirectional coupling (35) at β = 1, � = 0.5, c = 0.2, A = 0.79804918, B =
0.80237721. Diagrams (a) and (b) show two projections of the attractor, one onto the plane
of variables of the master subsystem, and another for the driven subsystem. Black dots on
the portraits correspond to the cross-section with a hyper-plane t = 0.35 (mod 1) (strobo-
scopic Poincaré section). Diagram (c) represents these points on the plane of x2 versus x1.

because it is introduced by terms in the differential equations with the
same variables as those under derivatives in the left parts of the equations.

As computed in ref. 52, at fixed β = 1, � = 0.5, and coupling con-
stant c=0.2, the bicritical point of the system (35) is located at A=Ac =
0.79804918, B =Bc =0.80237721.

Diagrams (a) and (b) in Fig. 10 show phase portraits of the bi-
critical attractor in two projections from the five-dimensional extended
phase space. The first is a plane of variables for the master subsystem,
and another for the driven subsystem. The trajectories constituting the
attractor are drawn in gray. Black dots correspond to moments of cross-
section of an orbit with a hyper-plane t=const in the phase space (strobo-
scopic Poincaré section). Diagram (c) represents these points on the plane
(x1, x2). It looks remarkably similar to portraits of the bicritical attrac-
tors discussed above for the model maps. Figure 11 shows parameter plane
charts locally near the bicritical point. The scaling property for a vicin-
ity of the bicritical point is illustrated: Under magnification with factors
δ1 =4.6692 and δ2 =2.3927 the structure of the domains in the parameter
plane obviously looks similar.

The above examples of bicriticality relate to coupled maps and cou-
pled non-autonomous oscillators. Is it possible to observe the phenome-
non in a case of autonomous self-oscillating period-doubling systems with
unidirectional coupling? Apparently, the driven subsystem must be syn-
chronized by the master one, in a sense of phase synchronization.(53) In
opposite case, for example at large frequency detuning of the elements, one
should expect rather quasiperiodic dynamics with further bifurcations on a
base of these regimes.

An appropriate object to construct an example of bicriticality in
autonomous coupled systems is Chua’s circuit, which can demonstrate
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Fig. 11. Parameter plane diagrams for driven nonlinear oscillators with unidirectional cou-
pling of Kim and Lim (35), β = 1, � = 0.5, c = 0.2. Areas of distinct periodic regimes are
shown in gray scale, and periods are marked with numbers. The second picture is obtained
by magnification of the small box from the first one with factors δ1 =4.6692 and δ2 =2.3927
along the horizontal and vertical axes, respectively.

the Feigenbaum period-doubling cascade in a course of transition to
chaos.(51,54,55) An advantage of this example is simplicity in computations:
due to piecewise characteristic of the involved nonlinear element, the cal-
culations may be performed with use of analytical expressions valid in
definite parts of the phase space.

To build a model analogous to those discussed above, let us consider
a system of two Chua’s circuits with unidirectional coupling of dissipa-
tive type.(51) As it tends to equalize instantaneous states of the coupled
elements, it provides the phase synchronization too. The set of equations
reads:

ẋ1 =α1 (y1 −h(x1)) ,

ẏ1 =x1 +y1 − z1,

ż1 =−by1,

ẋ2 =α2 (y2 −h(x2))+ ε(x1 −x2),

ẏ2 =x2 +y2 − z2 + ε(y1 −y2),

ż2 =−by2 + ε(z1 − z2),

(36)

where

h(x)=
⎧
⎨

⎩

(2x +3)/7, x �−1,

−x/7, −1<x <1,

(2x −3)/7, x �1.

Dynamical variables xi , yi , zi with indices i = 1,2 relate to the first
and the second subsystem, respectively. Parameters α1 and α2 are sup-
posed to be varied independently to control period doublings in two sub-
systems. Parameter b and coupling constant ε are fixed, namely, we set
b=10 and ε =0.2.

With increase of parameter α1, transition to chaos in the first subsys-
tem occurs via the Feigenbaum period doubling bifurcation cascade and
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gives rise to an asymmetric attractor of Rössler type. The limit point of
the period doubling corresponds to α1 = 6.542725993 . . . At this value,
by variation of parameter α2, one can reach the bicritical point at α2 =
6.64680875 . . . (see details of the computations in ref. 51). For the second
subsystem, as checked, multipliers at this point demonstrate fast conver-
gence to the universal number −1.1788 . . . (see Table III).

In Fig. 12 phase portraits are shown for the bicritical attractor in the
coupled Chua circuits. The diagrams (a) and (b) correspond to projections
of the attractor onto the planes of two variables relating to the first and
to the second subsystem, respectively. Qualitatively, they may be compared
with the portraits in Fig. 10. To demonstrate scaling properties intrinsic
to the dynamics at the bicritical point we show separately a sequence of
fragments for both pictures. Resolution of each next level of the Cantor-
like structure of strips constituting the attractor requires scale change with
Feigenbaum’s scaling factor −2.5029 . . . for the panel (a) and with bicrit-
ical factor −1.505318 . . . for the panel (b).

Figure 13 shows a chart of the parameter plane (α1, α2) for the cou-
pled Chua circuits (36). Different gray tones designate distinct periods of
the driven subsystem. In fact, the diagram was computed with a help of
the Poincaré section construction. Numbers in the gray areas indicate a
number of cross-sections of the Poincaré surface per one entire period of
the orbit. Bicritical point on the chart is marked with letter B. A rectan-
gular fragment of the diagram near the bicritical point is shown in the
inset, and then once more with magnification by factors δ1 = 4.6692 . . .

and δ2 =2.3927 . . . for the axes α1 and α2, respectively. Observe good cor-
respondence of the pictures and twofold increase of characteristic period
for all dynamical regimes in the areas shown in the second inset in com-
parison with those in the first one.

Table III. Main multipliers of periodic orbits at the bicritical

point of two Chua’s systems with unidirectional coupling

α1 = 6.542725993, α2 = 6.64680875, b = 10, ε = 0.2

p =2k µ P =2k µ

2 −1.172447 64 −1.174172
4 −1.159058 128 −1.182497
8 −1.178773 256 −1.176030

16 −1.173025 512 −1.182088
32 −1.182463 1024 −1.178883
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Fig. 12. Portraits of the bicritical attractos for the unidirectionally coupled Chua circuits in
projections onto phase planes of the first (a) and of the second (b) subsystems. The right-
hand panels represent fragments of the critical attractor with higher resolution. The magni-
fication factor for the sequence of the fragments in the panel (a) is |α|=2.5029, and in panel
(b) |β|=1.5053.

Fig. 13. Parameter plane (α1, α2) for the system of two Chua’s circuits with unidirectional
coupling. Gray tones designate distinct periods of the driven subsystem; numbers in the gray
areas indicate a number of cross-sections of the Poincaré surface per a complete period
of the motion. Black designates chaos or higher-period regimes. Near the bicritical point
marked B a universal topography of regimes takes place, which reproduces itself under mag-
nification by factors δ1 = 4.6692 and δ2 = 2.3927 along horizontal and vertical directions, as
shown in insets.
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4.3. Towards Observation of Criticality of FQ-type

In general, it is not so easy to locate a critical situation of FQ type
in parameter space of a nonlinear system because of codimension 3. How-
ever, it is possible to construct some models, in which one can reach such
critical point by variation of only two control parameters. For example, in
the first work reported about the FQ critical behavior,(56) it was found in
a system of two asymmetrically coupled one-dimensional maps

xn+1 =1−λx2
n −Cy2

n,

yn+1 =1−Ay2
n −Bx2

n

(37)

by variation of λ and A with fixed B and C. Apparently, it is so because
coupling in the equations introduced via the quadratic terms is of dissipa-
tive type.8 It is essential, however, that FQ criticality occurs in the case of
opposite signs of the coupling coefficients B and C. Thus, one of the cou-
plings must be associated with “negative dissipation”. In a physical realiza-
tion, it means that the system would contain necessarily an active element
(like negative resistor). In the model (37), for particular B =0.375 and C =
−0.25 the FQ-point is placed at λc = 1.654524590, A=Ac = 1.030837593,
as computed in ref. 56.

On the same reasons as in the previous section, a more realistic model
should be based on coupled two-dimensional invertible maps, say, Hénon-
like maps, which may be interpreted as Poincaré maps for a hypothetical
flow system. By analogy with coupled one-dimensional maps, we expect
that the dissipative nature of coupling will be a condition of presence of
the FQ criticality in a two-parameter family of the systems.

In ref. 57 the following form of dissipatively coupled Hénon-like maps
was suggested:

xn+1 =1−λx2
n −Cy2

n −bun +bC′(un −vn),

un+1 =xn +C′(un −vn),

yn+1 =1−Ay2
n −Bx2

n −bvn +bB ′(vn −un),

vn+1 =yn +B ′(vn −un),

(38)

where B ′ =B(A−C)/(Aλ−BC),C′ =C(λ−B)/(Aλ−BC).

At fixed coupling coefficients B =0.375, C =−0.25 and at dissipation
parameter b = 0.3, a chart of the parameter plane (λ, A) is shown in the

8As we believe, dissipative nature of coupling corresponds to exclusion of the third eigen-
mode in linearized RG equation, presence of which would destroy a possibility of occur-
rence of the FQ criticality in a family of maps with two regulated parameters.
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Fig. 14. Chart of dynamical regimes for the coupled Hénon maps (38) on the parameter
plane (λ, A) at fixed B =0.375, C =−0.25, b=0.2 (a). A neigborhood of the crtical point FQ
is shown separately in the inset in scaling coordinates A = Ac + C2, λ = λc + C1 + 0.8452C2,
where Ac and λc are coordinates of the critical point (39). Diagrams (b) and (c) demonstrate
self-similarity of universal topography in a small vicinity of the critical point in respect to
scale change with factors δ1 = 6.3263 and δ2 = 3.4447 along the horizontal and vertical axes,
respectively.

first diagram of Fig. 14. One can see there a sequence of period-doubling
bifurcation curves terminated on upper edges at some codimension-two
bifurcation points, where two main multipliers become equal to (−1) for a
respective period-2k orbit. Numerical estimate of the limit for the sequence
of terminal points yields the critical point

λ=λc =1.99689387746 . . . , A=Ac =1.37271095406 . . . (39)

Is it a critical point of FQ type? In Table IV we present multipli-
ers of unstable periodic orbits of period 2k. Observe that they demon-
strate evident fast convergence to the universal values expected from the
RG analysis. It indicates certainly affiliation of the critical point to the FQ
universality class.

In Fig. 14a parameter plane (λ,A) is shown. Gray tones designate
domains of different periods. Black corresponds to non-periodic regimes,
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Table IV. Multipliers of period-p cycles at the critical point

FQ in the coupled Hénon maps (38) λ = 1.99689387746,

A = 1.37271095406, B = 0.375, C = −0.25

p =2k µ1 µ2

4 −1.598516 −1.264022
8 −1.614100 −1.102840

16 −1.613152 −1.019406
32 −1.583516 −1.047357
64 −1.571140 −1.077544

128 −1.588789 −1.049397
256 −1.583506 −1.042284
512 −1.574441 −1.060960
RG −1.579739 −1.057149

including quasiperiodicity and chaos, and white to divergence of iterations
to infinity. To demonstrate scaling properties of the parameter plane in a
neighborhood of the critical point, an appropriate scaling coordinate sys-
tem (C1, C2) has to be introduced. It has been determined from computa-
tions in ref. 57 (see formula in the figure caption). A small parallelogram
in Fig. 14a has sides directed along the axes of the scaling coordinate sys-
tem. The coordinate axes C1 and C2 are associated with shifts from the
critical point giving rise to the eigenmodes of the linearized RG equation
with eigenvalues δ1 and δ2, respectively. Topography of domains of differ-
ent dynamical regimes inside this parallelogram is depicted in the inset in
scaling coordinates. Diagrams (b) and (c) show yet smaller vicinities of the
critical point in scaling coordinates to demonstrate the universal arrange-
ment and local scaling properties of the parameter plane near the FQ
point. In diagram (c) magnification in comparison with (b) is increased by
factors δ1 and δ2 along the horizontal and the vertical axis, respectively.
(See Fig. 3 for comparison.)

The above example proves that FQ criticality may be observed in sys-
tems like coupled driven dissipative nonlinear oscillators if the coupling
is chosen in a right way. Indeed, in this case description in terms of the
stroboscopic Poincaré map is appropriate. Both subsystems cross the fixed-
time plane in the extended phase space simultaneously, so the problem
reduces to that for coupled invertible two-dimensional maps of the same
sort as the discussed Hénon map model (38).

What happens if we try to build up a system of two coupled autono-
mous self-oscillators? In the case of three-dimensional partial systems, the
formally constructed Poincaré map is five-dimensional, not reducible, in
general, to two coupled two-dimensional maps. Apparently, presence of
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an additional dimension in the Poincaré map facilitates appearance of the
third eigenmode in the solution of the RG equation, and it becomes nec-
essary to have three control parameters to reach the critical situation FQ.
A concrete example we have considered supports this assertion. This is a
system of two Chua’s circuits with dissipative coupling governed by equa-
tions

ẋ1 =α1 (y1 −h(x1))+ ε1(x2 −x1),

ẏ1 =x1 +y1 − z1 + ε1(y2 −y1),

ż1 =−b1y1 + ε1(z2 − z1),

ẋ2 =α2 (y2 −h(x2))+ ε2(x1 −x2),

ẏ2 =x2 +y2 − z2 + ε2(y1 −y2),

ż2 =−b2y2 + ε2(z1 − z2),

(40)

h(x)=
⎧
⎨

⎩

(2x +3)/7, x �−1,

−x/7, −1<x <1,

(2x −3)/7, x �1 .

A search for the FQ point by variation of only two parameters was
unsuccessful. On the other hand, by variation of three parameters, α1, α2,
and b1 at fixed ε1 = −0.05, ε2 = 0.2, b2 = 10, the FQ point was detected
and located at

α1 =6.330061623840 . . . , α2 =6.585930638394 . . . ,

b1 =10.19802309657 . . . (41)

Table V gives evidence of the true FQ nature of this point. There we
present pairs of largest in modulus multipliers for unstable periodic orbits
coexisting at the critical point; p=2k designates a number of steps of the
Poincaré map necessary to close the cycle. Observe evident convergence to
the universal values obtained from the RG analysis.

Figure 15 demonstrates another characteristic property of the FQ
critical dynamics. It shows a portrait of the critical attractor of the cou-
pled Chua circuits (40) in projection onto the plane of two variables relat-
ing to the first partial system, x1 and y1. A fragment of the picture inside
a small rectangular is magnified, and the series of pictures demonstrates
in more details the fractal-like “strips” constituting the critical attractor.
Under magnification by α1 = −1.9000 . . . structure of the “strips” repro-
duces itself in accordance with our expectations based on the results of the
RG analysis.9

9It is rather difficult to extract another scaling factor β = −4.0081 . . . from such computa-
tions because of fast shrinking of the respective details of the fractal critical attractor.
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Table V. Multipliers of period-p cycles at the critical point

FQ in the coupled Chua circuits (40) α1 = 6.330061623840,

α2 = 6.585930638394, b1 = 10.19802309657, b2 = 10, ε1= −0.05,

ε2=0.2

p =2k µ1 µ2

2 −1.608889 −1.060549
4 −1.611282 −1.022946
8 −1.593053 −1.037003

16 −1.557415 −1.086792
32 −1.586435 −1.067858
64 −1.594082 −1.025180

128 −1.562911 −1.078976
256 −1.579819 −1.057080
512 −1.558385 −1.071767
RG −1.579739 −1.057149

Fig. 15. Portrait of critical attractor of the coupled Chua circuits (40) at the point FQ in
projection onto the plane of two variables relating to the first partial system. A small frag-
ment of the picture inside a small rectangular is shown separately. Under subsequent magnifi-
cation by factor |α|=1.9000 . . . the structure of “strips” constituting the attractor reproduces
itself on each second step of enlargement (account negative sign of α).

4.4. Examples of Criticality of C-type and of Critical

Quasi-Attractors

Let us turn to discussion of possibilities of observation of the criti-
cal behavior of C-type. In analogy with Section 3.4, where a non-invert-
ible two-dimensional map was considered, we expect to meet the C-type
criticality in a wide class of system in a situation, when variation of one
parameter gives rise to period doublings, and variation of another one to
a saddle-node bifurcation. Here we will consider two examples, one relates
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to a problem of synchronization of a self-oscillating period-doubling sys-
tem, and another to behavior at the edge of synchronization tongue near
the bifurcation of Neimark–Sacker.

Our first example is a Rössler system under external periodic driving:

ẋ =−y − z+A sin 2π�t, ẏ =x +ay, ż=b+ z(x − r), (42)

where A and � designate amplitude and frequency of the external force,
and other parameters a, b, r are internal characteristics of the Rössler
oscillator.

In a definite domain of the internal parameters, where the autono-
mous Rössler oscillator manifests periodic self-oscillations (the limit cycle),
a supplement of the external force gives rise to synchronization (if the
driving frequency is close to the frequency of self-oscillations) or to qua-
siperiodic beating (if the frequency difference is large enough). In Fig. 16
we show a picture of domains of different regimes in the parameter space
(r, �, A) as obtained in computations at fixed a = b = 0.2.(58) In a cross-
section by a plane r = const the region of synchronization has a form of
tongue, traditionally called the Arnold tongue. In the three-dimensional
parameter space, the synchronization domain is bounded by two surfaces
of the saddle-node bifurcations.

Let us increase the internal parameter r. In the autonomous Rössler
system it gives rise to the period doubling bifurcation cascade. Inside the
synchronization domain, the period-doubling bifurcations take place in the
non-autonomous system as well. In the three-dimensional parameter space
(r, �, A), they occur on definite surfaces, which accumulate to a limit, the
Fiegenbaum critical surface. Each of the period-doubling bifurcation sur-
faces has an edge line at the intersection with the boundary of the Arnold
tongue. These lines are denoted in Fig. 16 as terminal curves.

The terminal curves corresponding to the subsequent period dou-
blings converge to a limit, the curve of C-type criticality. As we know, in
general, in the case of this critical behavior, the universal quantitative reg-
ularities start to act well only after a large number of the period-doubling
bifurcations because of the slow convergence, due to presence of the eigen-
value δ3 ≈0.93 in the spectrum of the linearized RG transformation. Con-
tribution of the slow mode may be excluded by a special selection of an
additional parameter. In the system under consideration, we have found
the point on the critical curve C optimal in a sense of convergence rate
by careful selection of the driving amplitude A. In Fig. 16 it is marked
with a bullet and, in accordance with numerical computations of ref. 58,
has the following coordinates:
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Fig. 16. 3D view of the parameter space (�, r, A) for the periodically driven Rössler oscil-
lator at a=b=0.2. The inscriptions explain nature of regimes and bifurcations. For clarity of
the diagram, the bifurcational surfaces are drawn only partially. An optimal point for obser-
vation of the scaling regularities on the C-type critical curve is marked by a bullet.

r =4.935701677 . . . , �=0.148253488 . . . , A=1.35. (43)

In Table VI the data for periodic orbits (stable and unstable) at the
critical point are presented. Observe that the multipliers of the periodic
orbits are in good correspondence with the expected universal values (see
the last row in the Table).

A remarkable feature of dynamics at the critical point C derived
from the RG analysis is presence of the critical quasiattractor, a count-
able infinite set of coexisting stable cycles of period proportional to 4k,
k = 0,1,2, . . . In computations, it is possible to get al least several first
representatives of this family of attractors. Their phase portraits are shown
in Fig. 17.

As known, the Rössler oscillator manifests dynamical behavior typi-
cal for a wide class of low-dimensional dissipative chaotic systems, namely,
the period-doubling cascade and the birth of a chaotic attractor of spi-
ral type. We believe that dynamical properties analogous to those found
in the forced Rössler oscillator will occur also in other systems of this
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Table VI. Multipliers of cycles of period of p units of the driving period at

the critical point of C type in the driven Rössler oscillator r = 4.935701677,

= 0.148253488, A = 1.35

p =4k µ
(1)

2 µ
(1)

1 p =2 ·4k µ
(2)

2 µ
(2)

1

1 0.777162 −0.600727 2 1.229085 −0.911129
4 0.858520 −0.685901 8 1.180212 −0.860374

16 0.85021 −0.71942 32 1.17467 −0.84945
64 0.84756 −0.73033 128 1.1724 −0.8342

256 0.850 −0.721
RG 0.847450 −0.725255 RG 1.174459 −0.848865

Fig. 17. Attractive limit cycles of period 1 (a), 4 (b), 16 (c), and 64 (d) (measured in units
of the period of external force) for the periodically driven Rössler oscillator at the critical
point (43). These are four representatives of an infinite set of stable periodic orbits constitut-
ing the critical quasiattractor.

class under external periodic driving. It may be expected that the critical
behavior of C-type could be observed in carefully organized experiments
on synchronization of period doubling dissipative systems (e.g. convec-
tive systems, electronic oscillators, etc.). As may be conjectured, this is a
universal attribute of the synchronization breakup corresponding to the
limit of period-doubling at the edge of Arnold tongue. Of course, in



734 Kuznetsov et al.

experiments only a finite number of the stable orbits from the critical
quasi-attractor will be observable.

Let us turn to another example. As we believe, it is of principal sig-
nificance, although relates to an artificially constructed model map.

One of the most widely discussed scenarios of the onset of turbulence
comes back to Landau and Hopf(59,60) and consists, as they suggested, in
subsequent birth of oscillatory components with incommensurate frequen-
cies, or, in language of more modern nonlinear dynamics, in subsequent
birth of attractors represented by tori of higher and higher dimensions. In
accordance with latter argumentation of Ruelle and Takens,(61) after few
first bifurcations a strange chaotic attractor will be born instead of the
higher-dimensional torus. In any case, this picture contains an intermediate
stage of bifurcation of the onset of torus from the limit cycle. It is known
as the bifurcation of Neimark–Sacker.(27,28)

Let us construct a model map, which can demonstrate all bifurcations
relevant for the problem of stability loss of a limit cycle, including the
Neimark–Sacker bifurcation.

In linear stability analysis of dynamics in terms of Poincaré section
near a limit cycle one obtains a linear map, which may be written in
appropriately chosen variables as

xn+1 =Sxn −yn, yn+1 =Jxn, (44)

where S and J are trace and determinant of the Jacobian matrix defined
over one period of the cycle. They depend in some way on parameters of
the problem, but here we prefer to regard S and J themselves as control
parameters. The Floquet eigenvalues, or multipliers, are the roots of the
quadratic equation µ2 −Sµ+J =0. Domain of stability of the limit cycle
is determined by condition that both multipliers are less than one in mod-
ulus. On the parameter plane (S, J ) it is a triangle with sides

• 1−S +J =0 (one multiplier equals 1),

• 1+S +J =0 (one multiplier equals −1), and

• J =1 (two complex conjugate multipliers have unit modulus)

(see Fig. 18a and refs. 62, 63).
Next, we introduce nonlinearity “by hands”, in a hope that the most

common features of the bifurcation transitions will be caught in the con-
structed map. Namely, we set(64)

xn+1 =Sxn −yn − (εy2
n +x2

n), yn+1 =Jxn − (y2
n +x2

n)/5. (45)
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In Fig. 18b we present chart of dynamical regimes for the map (45)
on the parameter plane (S, J ) at fixed ε = 0.535. One easily recognizes
the stability triangle. Inside of it, attractor is a fixed point at the origin.
On the left side, it undergoes the period-doubling bifurcation, and subse-
quent bifurcations of the period-doubling cascade may be seen as well. On
the right side (dashed line), a saddle-node bifurcation happens accompa-
nied with a jump to another fixed-point attractor, which can undergo its
own bifurcations. On the topside, the Neimark–Sacker bifurcation takes
place of birth of motion spiraling around the former attractive fixed point.
Concrete nature of a regime depends on the rotational number linked
with argument of the complex multiplier at the bifurcation. In the region
upper the bifurcation border one can see tongues of periodic regimes and
domains of quasiperiodicity between them.

Let us consider in more details one of the tongues, that of period 4.
Diagram (c) shows this tongue and its neighborhood with magnification.
Observe that the period-doubling bifurcation curves inside the tongue vis-
ibly stick into the edge. Computations confirm that there is a sequence of
terminal points for the period-doubling bifurcation curves at the edge of
the synchronization tongue, which converges to a limit point located at

S =Sc =−0.548966 . . . , J =Jc =1.547188 . . . (46)

This is a critical point of C-type. To give evidence of its nature on the
quantitative level, we present in Table VII numerical data on multipliers for
cycles of period 2k computed at this point.

Fig. 18. Parameter plane for the model map (45): (a) triangle of stability for the fixed point
at origin; (b) chart of dynamical regimes and its magnified fragment (c). Gray scales are used
to show areas of periodic dynamics. Black designate chaos, quasiperiodicity or unrecognized
high-period regimes. Stripped area indicates coexistence of different attractors. Critical point
C located at the period-doubling accumulation point at the edge of synchronization tongue
is marked in diagrams (b) and (c).
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Observe nice correspondence of multipliers to the universal values
known from the RG analysis (the last row of the Table). A fast convergence
to the universal constants occurs because we exclude contribution from the
slow decaying mode of the RG equation by special selection of ε.

As we found, critical points of the same nature occur inside some
other tongues above the Neimark–Sacker bifurcation.

As follows from this example, in the multiparameter analysis of tran-
sition to turbulence via quasiperiodicity (scenario of Landau–Hopf–Ru-
elle–Takens), already on a stage of birth of the second incommensurate
frequency, one can expect presence of critical points of C-type with intrin-
sic nontrivial features of dynamical behavior, including coexistence of a
countable set of attractive periodic orbits.

5. CONCLUSION AND GENERAL DISCUSSION

In many fields of mathematics, researchers use to classify entities
according to their codimension, which may be thought as a number
of parameters adjusted to observe the phenomenon. In particular, this
approach is of fundamental significance in bifurcation theory and catas-
trophe theory. After Feigenbaum’s discovery of the period-doubling uni-
versality and development of the renormalization-group (RG) method, it
seems natural in this spirit to turn to search and classification for situa-
tions, which can occur in multiparameter analysis of the onset of chaos
and allow the RG analysis.(31,65,66) We call this field a theory of multi-
parameter criticality.

In this paper we concern only a part of this broad area, namely, we
outline situations linked with period-doubling transitions to chaos with a
second phase-space dimension coming into play. It requires using at least
two-dimensional maps as the simplest representatives for the universality
classes. Each type of critical behavior corresponds to a fixed-point or a
periodic solution of the two-dimensional generalization of Feigenbaum-

Table VII. Multipliers of cycles of period p at the critical point of C type in

the model map (45) S = -0.548966, J = 1.547188, ε = 0.535

p =4k µ
(2)

2 µ
(2)

1 p =2 ·4k µ
(1)

2 µ
(1)

1

64 1.179719 −0.874220 128 0.859691 −0.695732
256 1.175752 −0.855538 512 0.850658 −0.722936
512 1.172441 −0.847454 2048 0.847450 −0.725255
RG 1.174459 −0.848865 RG 0.847450 −0.725255
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Cvitanović equation and is characterized by a set of universal constants,
like Feigenbaum’s α and δ. We present a number of realistic systems man-
ifesting those types of critical behavior and indicate some relevant condi-
tions for their possible observation in physical experiments.

Concretely, we discussed four types of criticality:

• H-type, which was discovered in the context of conservative period
doubling, but occurs as well in dissipative dynamics, as a phenomenon of
codimension 2;

• bicritical behavior, which occurs in systems allowing decomposi-
tion onto two unidirectionally coupled dissipative period-doubling subsys-
tems, each of which is brought by parameter tuning onto the threshold of
chaos;

• FQ-type, which takes place in a degenerate class of two-dimen-
sional maps, represented in appropriate coordinates via functions of com-
binations X2 and XY ;

• C-type, which occurs in noninvertible two-dimensional maps repre-
sented as a composion of a fold mapping with a general affine transforma-
tion; it is associated with a period-2 saddle solution of the RG equation.

We have indicated a novel possibility for realization of the H type
criticality that consists not in a trivial reduction of dissipation, but in
compensation of it in a self-oscillatory system. For bicriticality, we have
presented a number of examples, e.g. coupled Hénon-like maps, coupled
driven oscillators, coupled chaotic self-oscillators, which manifest this type
of behavior. For FQ-type we indicate possibility to arrange it in non-
symmetric systems of coupled period-doubling subsystems, e.g. Hénon-like
maps and Chua’s circuits. For C-type we present examples of its appear-
ance in a driven Rössler oscillator at the period-doubling accumulation on
the edge of syncronization tongue and in a model map with the Neimark–
Sacker bifurcation.

An alternative possibility for appearance of non-Feigenbaum criti-
cal behavior relates to a case when the dynamics at the period-doubling
onset of chaos remains essentially one-dimensional, but the one-dimen-
sional map is distorted in such degree that leaves the Feigenbaum univer-
sality class.

To give a very short summary of related results, we remind that soon
after Feigenbaum’s works it was noted that qualitatively the same period
doubling bifurcation cascade occurs in maps like xn+1 = 1 − λ|x|κ , where
κ >1 is a real constant. It appears that factors α and δ depend on κ.(67–69)

RG analysis of this case gives rise to a family of fixed-point solutions
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of the Feigenbaum-Cvitanović equation represented as expansions over
powers of |x|κ .

Arbitrary degree of extremum in a one-dimensional map is not a pure
academic subject, but occurs in the context of the so-called homoclinic
bifurcations in flow systems. It relates to the onset of chaos due to forma-
tion of a homoclinic structure associated with a saddle point in the phase
space. In description in terms of the Poincaré map with approximation by
a one-dimensional map, degree of the extremum κ is linked with a ratio
of eigenvalues of the saddle point.(65,70–72) It is worth noting a remark-
able fact of existence of nontrivial limit behavior for universal constants
at κ →∞. (In particular, δ converges to 27.576303.(73,74))

In addition, there is a number of publications devoted to period dou-
bling cascades in unimodal maps possessing a degree-κ maximum with
differing left and right κth derivatives controlled by two parameters.(75–77)

In RG analysis, the critical situation at the chaos threshold is associated
with period-2 solutions of the Feigenbaum–Cvitanović equation. The case
of differing left- and right-hand degrees was also discussed.(78)

Recently, in ref. 79 a phenomenon was studied consisting in dis-
appearance of period-doubling cascades due to collision of the periodic
orbits with a saddle-type equilibrium point. It corresponds to some special
critical situation in flow systems that occurs in a two-parameter analysis,
referred to as the homoclinic doubling cascade. As shown, this phenome-
non possesses some scaling regularities and may be analyzed on a basis of
model one-dimensional maps representing the universality class.

If we restrict ourselves with apparently a more natural case of smooth
analytic maps, the degree of extremum has to be an even integer, e.g.
κ = 2,4,6 . . . Quadratic extremum corresponds to the Feigenbaum uni-
versality class. The next κ = 4 corresponds to the so-called tricritical
points.(51,80–83)

In a family of unimodal one-dimensional maps the tricritcality occurs
as a phenomenon of codimension 3. (Two parameters are necessary to
ensure vanishing the second and the third derivatives at the extremum
point, and one more to control the period-doubling bifurcation cascade
under the imposed condition.)

Alternatively, one can get the tricrical situation in a two-parameter
family of one-dimensional maps with two extrema called the bimodal
maps. In this case, a curve may exist on the parameter plane determined
by a requirement that one extremum is mapped precisely to another. Then,
as iterated map accepts a quartic extremum, and the period-doubling cas-
cade, if occurs, gives rise to the tricritical point. On the parameter plane,
such tricritical points appear as terminal points of pieces of Feigenbaum’s
critical lines.(80,81)
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Passage from one-dimensional maps to Hénon-like two-dimensional
dissipative maps does not destroy the tricriticality of codimension 3, but,
the tricriticality of codimension 2, in contrast, does not survive.(82) Some-
times a number of the period-doublings needed to notice a deflection from
the true tricritical regularities is large enough. It may happen that it can
be impossible to detect any difference with true tricriticality in any think-
able experiment, or even in computations of commonly used double preci-
sion. In such cases, the tricritical scaling occurs as a kind of intermediate
asymtotics valid for a number of observable period-doubling levels, and we
speak of the pseudo-tricritical behavior (see examples in refs. 51, 83).

In bimodal maps, as follows from two-parameter analysis the border
of chaos on the parameter plane is of complex nature.(55,81,84,85) It con-
tains fragments of Feigenbaum critical lines and an infinite fractal-like set
of critical points of codimension 2. They may be regarded as period-dou-
bling accumulation points on a set of paths in the parameter plane, which
form a binary tree. These critical points are in one-to-one correspondence
with a set of binary codes determining all possible itineraries on the tree.
Tricritical points are particular representatives of this set with codes con-
taining a tail of one repetitive definite symbol. Critical points with tails of
codes determined by repetitive fragments of p symbols are associated with
cycles of the Feigenbaum–Cvitanović equation of the period p. It means
that structures in phase space and in parameter space manifest self-similar-
ity after each p steps of the doubling transformation. Non-periodic codes
correspond to non-periodic orbits of the RG equation, and in this case
one can speak about scaling only in statistical sense (the so-called renor-
malization chaos). As demonstrated in computations, critical points with
periodic codes, not relating to the tricritical class, survive with passage to
the Hénon-like maps.(86,83)

A clear indicator of the outlined picture of critical behavior intrin-
sic to bimodal maps visible in parameter planes of many realistic sys-
tems, is presence of structures called “crossroad area”, “swallows”, and
“shrimps”.(87–89)

Situations of appearance of higher degrees of extrema under itera-
tions of smooth one-dimensional maps are possible as well.(90) In particu-
lar, a critical behavior corresponding to an extremum of the 6-th power
takes place if a map has a quadratic extremum and a cubic inflection
point, and one is mapped to another. This may occur generically on a
curve in a three-dimensional parameter space. If the period-doubling bifur-
cation cascade takes place along this curve, the accumulation yields the
critical point of the respective class. In a case of three quadratic extrema,
the first mapped to the second, and the second to the third, the iterated
map accepts extremum of the 8-th power. Again, this situation is generic
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on a curve in a three-dimensional parameter space, so the critical point of
period-doubling accumulation of this type may appear as a phenomenon
of codimension 3.

A number of universality classes was found in complex analytical
(conformal) iterative maps. They may be equivalently represented as real
two-dimensional maps satisfying the Cauchy–Riemann equations. In com-
plex maps of degree 3, 4, 5, 6, . . . the period-doubling cascades occur
represented by converging sequences of bifurcation points on the complex
parameter plane. Complex solutions of the Feigenbaum-Cvitanović equa-
tion corresponding to the limit points of these cascades were obtained
and universal complex constants α and δ estimated.(91–93) For complex
quadratic map, beside the period doubling on the real axis, cascades of
period tripling, quadrupling, etc. in the complex parameter plane take
place.(94,95) The respective critical points are particular points of the well-
known Mandelbrot set.(96) In the class of analytic maps, the critical points
of accumulation of the m-tupling bifurcation cascades are of codimen-
sion 2. It corresponds to presence of a single complex eigenvalue of the
linearized equation near the complex fixed-point of the m-tupling RG
transformation. For the case of period-tripling it was shown that in a
class of general smooth two-dimensional maps (not satisfying necessar-
ily the Cauchy–Riemann equations) an additional relevant complex eigen-
value appears. As follows, the period-tripling accumulation point for these
maps is of codimension 4.(97)

In concern with the conservative period-doubling, beside the mentioned
H type of criticality, universal regularities intrinsic to four-dimensional sym-
plectic maps were studied.(98,99)

Another range of questions in the field of multi-parameter critical-
ity relates to the quasiperiodic dynamics. Here, the starting point is a
codimension-2 critical situation known after Shenker,(100) which occurs
at the golden-mean rotational number in the sine circle map having a
cubic inflection point. Renormalization group analysis was developed in
early 80th.(101,102) This critical situation was found in two-dimensional
maps,(103) in forced nonlinear oscillators,(16) in experiments with fluid
convection(104) and with electronic circuits.(105,106) Also, some regulari-
ties were stated embracing the complete set of rotational numbers, and
attempts of description in terms of RG approach were undertaken.(107,108)

In addition, more complicated situations of inflection points of higher
order or presence of more then one inflection points on the basic interval
were analyzed.(109–111)

A conservative version of the critical quasiperiodic dynamics appears
in a problem of destruction of the Kolmogorov–Arnold–Moser tori. As
believed, the last torus is that of the golden-mean rotational number. RG
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analysis for this case was developed in refs. 112–115. In addition, critical
situations of higher codimension were distinguished and studied.(116–118)

Some results are known for other rotational unmbers, including renormal-
ization chaos, corresponding to non-periodic behavior of solutions under
iterations of the RG transformation.(119,120)

In the context of quasiperiodicity, it is worth mentioning a research
direction concerning application of the RG approach to situations of birth
of strange nonchaotic attractors.(121) For several critical situations (a blow-
out bifurcation, terminal points of bifurcations of torus doubling and
torus collision, a critical point separating situations of smooth and frac-
tal tori collision) formulation of the respective functional equations, their
numerical solution, estimates of universal constants, study of local param-
eter space topography were presented in refs. 122–125.

Finally, we have to mention transitions via intermittency. The most
common kind of intermittency introduced by Pomeau and Manneville
(type I), is characterized by alternating stages of relatively long “laminar”
stages and relatively short “turbulent” ones.(126) The laminar stages cor-
respond to travel of the orbit through a narrow “channel” arising after
bifurcation of collision and disappearance of a pair of fixed points (or
periodic orbits), one stable and another unstable. In the critical situation,
duration of the laminar phases approaches infinity. Several versions of the
RG analysis were suggested relating to the laminar stage dynamics.(127–129)

One of them exactly repeats the Feigenbaum–Cvitanović analysis, but the
solution of the functional equation relates to a distinct class of functions
(fractional-linear maps) and is obtained in an explicit analytic form. Anal-
ogous theory was developed for type-III intermittency, for laminar stages
corresponding to dynamics near the subcritical period-doubling bifurca-
tion.(130)

For conservative systems intermittent critical behavior was revealed
and studied similar to that of type I in dissipative case.(131,132) Moreover,
Zisook has developed a generalized approach based on theory of singular-
ities of differentiable maps and classified a number of universality classes
for intermittency in conservative case.(133)

It may be expected that further development of the theory of multi-
parameter criticality will shed light onto universal behaviors of nonlin-
ear systems in a course of transitions to multidimensional chaos. Mod-
els constructed as the simplest representatives of the universality classes
will be useful for phenomenological quantitative description locally near
the respective critical situations even in such cases, when dynamical equa-
tions are awkward or unknown. Unfortunately, beside the RG approach,
we do not have now a general mathematical principle for distinguishing
critical situations to be studied (in contrast to the bifurcation theory and
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catastrophe theory). In many respects conclusions are based on numerical
computations and plausible hypothesizes rather than on rigorous math-
ematical considerations. Nevertheless, it is clear that the multi-parameter
criticality must be regarded as important research direction in nonlinear
dynamics, which has many significant achievements and promises deep and
interesting developments.

The authors acknowledge support from RFBR grant No. 03-02-
16074.
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